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SUMMARY

Semantic Link Network (SLN) is a semantic Web model using semantic links—the natural extension of
the hyperlink-based Web. The SLN-Builder is a software tool that enables definition, modification and
verification of, as well as access to the SLN. The SLN-Builder can convert a SLN definition into XML
descriptions for cross-platform information exchange. The Intelligent Semantic Browser is used to visualize
the SLN and carry out two types of reasoning in browsing time: small granularity reasoning by chaining
semantic links and large granularity reasoning by matching semantic views of SLN. With the help of the
reasoning mechanism, the browser can recommend the content that is semantically relevant to the current
browsing content, and it enables users to foresee the end-side content of a semantic link chain. This paper
presents the design and implementation of the SLN-Builder and the intelligent semantic browser as well as
key algorithms. Copyright c© 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the invention of the World Wide Web, more and more people have become reliant on it to
share information by publishing and browsing Web pages, which also leads to exponential growth
of Web pages. This phenomenon makes it difficult to accurately and effectively locate, access and
maintain Web information, although many efforts have been made to resolve the issue [1–5]. HTML-
based Web pages are designed to be read, but the information expressed cannot be understood easily
by application software like search engines. It is difficult, therefore, for the current Web to support
intelligent services [6]. The Semantic Web is proposed to resolve this issue.

The concept of the Semantic Web was first proposed by Berners-Lee et al. in their book Weaving the
Web [7]. Information is given well-defined meanings, better enabling computers and people to work

∗Correspondence to: Hai Zhuge, China Knowledge Grid Research Group, Key Lab of Intelligent Information Processing,
Institute of Computing Technology, Graduate School, Chinese Academy of Sciences, Beijing, People’s Republic of China.
†E-mail: zhuge@ict.ac.cn

Contract/grant sponsor: National Grand Fundamental Research 973 Program; contract/grant number: 2003CB316901
Contract/grant sponsor: National Science Foundation of China

Copyright c© 2004 John Wiley & Sons, Ltd.
Received 18 July 2003

Revised 7 November 2003
Accepted 16 November 2003



1454 H. ZHUGE, R. JIA AND J. LIU

together [8,9]. Ontology mechanisms play an important role in information sharing across various
documents on the Web [6,10,11]. By specifying domain ontology, a document can be understood
by applications and applications can also understand one another to a certain extent. Many markup
languages are proposed to represent a document’s content [12–15]. With the XML schema, the
XML (http://www.w3.org/TR-REC-xml) can reflect the structured data, which is useful in raising the
accuracy of information retrieval [16]. The Resource Description Framework (RDF) is a foundation
for processing metadata using the object–property–value model, which also enables interoperability
between Internet applications that work in cooperation. The RDF schema (RDFS) provides a means
to define vocabulary, structure and constraints for expressing metadata of Web resources [17], thus
expressing more formal semantic information than the RDF. The topic map approach uses such
notions as topics, associations and occurrences to solve the issue of large quantities of unorganized
information [18]. The XML Topic Maps (XTM) can represent certain structural semantics on the
Web, therefore enabling more efficient Web retrieval [18]. Conceptual linking is an ontology-based
open hypermedia mechanism that aims to allow documents to be linked via metadata describing their
contents and hence to improve the consistency and breadth of linking Web documents at retrieval time
and authoring time [19].

However, the machine-understandable semantics may not be suitable for the user to understand.
The ideal semantic expression would be achieved by obtaining a balance between the machine-
understandable semantics and human-understandable semantics. The most important factor
contributing to the success of the current Web is its simplicity and readable style of Web pages.

A semantic link can be one of the following seven types: cause-effective link, implication link,
subtype link, similar-to link, instance link, sequential link and reference link [20], which provide the
basics for describing the external semantics. The Semantic Link Network (SLN) is a Semantic Web
model using semantic links to extend the hyperlinks of the current Web. A SLN consists of semantic
nodes and semantic links. A semantic node can be an atomic node (a piece of text or image) or a
complex node (another SLN). As the semantic links are the natural and smooth extension of the
hyperlink in semantics, the SLN can inherit the research results on hyperlink. The SLN can further
make use of the characteristics of the semantic link in reasoning and semantic operations.

In addition to the ability to represent the semantic relationship between entity resources, the semantic
links can also represent semantic relationships between abstract contents—concepts or the SLN
consisting of concepts and semantic links. The abstract SLN reflects a kind of high-level semantics
of the corresponding entity resources.

This paper presents the design and implementation of the SLN-Builder, which enables definition,
modification and verification of, as well as access to the SLN. Furthermore, the intelligent semantic
browser is described, which can visualize the SLN in a human-readable form and carry out
reasoning and content recommendation during browsing. The matching algorithms and operations for
implementing the intelligent semantic browser are also presented.

2. GENERAL ARCHITECTURE

The SLN-Builder and the Intelligent Semantic Browser are connected through XML descriptions—a
set of semantic-link XML descriptions and document-content XML descriptions. Their relationship is
depicted in Figure 1.
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Figure 1. General architecture.

The SLN-Builder comprises four components: definition interface, semantic link verification,
document verification and document storage. Using the definition interface, users can add and delete
semantic links easily. The semantic link verification component checks whether a semantic link is
stored in the correct format. The document verification component checks mismatching tags and cross-
nesting tags in the whole document. The document storage component is responsible for saving the
semantic link structures and document contents in the form of XML descriptions.

The intelligent semantic browser comprises five components: the match-maker, the reasoning rule
set, the reasoning mechanism, the HTML Converter, and the browser interface. The match-maker
presents a matching algorithm between SLNs or views of SLNs. The reasoning rule set contains the
rules that describe characteristics of a semantic link. The match-maker is responsible for discovering
the proper SLN that semantically matches the current browsing SLN. The reasoning rule set supports
small granularity reasoning—semantic link chaining. Large granularity reasoning is based on the
transitivity of the semantic inclusion relationship between views of SLN. The HTML Converter
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Figure 2. Workflow of the SLN-Builder.

transforms the XML description of the SLN and the reasoning result into a special form of Web page
so that the ordinary browser can display it in a uniform way.

3. IMPLEMENTATION OF SLN-BUILDER

The workflow of the SLN-Builder is shown in Figure 2. The source input of the SLN-Builder is a text
file, and the final output consists of the XML descriptions of the SLN corresponding to the source file.
The user should first upload the text file, and then use the SLN-Builder to define tags and semantic links
according to his/her understanding of the text. After that, the data verification component is executed to
check the correctness of the semantic link definition and tag definition. Finally, the document storage
component is executed to create the XML descriptions.

There are two types of tags: one is the ordinary tag that is frequently used in a document to reflect the
structure of a document, e.g. ‘ArticleTitle’, ‘Author’, ‘Abstract’, ‘Introduction’ and so on, and the other
is the self-definition tag. Figure 3 shows the interface of the tag definition. Figure 4 is the definition
result of Figure 3. Figure 5 shows the interface for defining the semantic links.

According to whether a semantic link is a cross-document, it can be classified into two types: intra-
document link and inter-document link, which can be created by the functions of the ‘InternalLink’
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Figure 3. Interface of ordinary tag definition.
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Figure 4. An example of a markup document using the definition tool.
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Figure 5. The interface for defining semantic links.

button and the ‘ExternalLink’ button of the interface shown in Figure 5. The definition result is stored
in the following data structure.

<Entity PredecessorID = string PredecessorText = string>

<SemanticRelation>

<Similar-to>

Link specification
</Similar-to>

<Sequential>
Link specification

</Sequential>
<Reference>

Link specification
</Reference>
<SubType>

Link specification
</SubType>
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<Instance>
Link specification

</Instance>
<Cause-effective>

Link specification
</Cause-effective>
<Implication>

Link specification
</Implication>

</SemanticRelation>

</Entity>,

where the ‘Link specification’ takes the following form:

<Link>

<SuccessorID> . . . </SuccessorID >

<SuccessorText> . . . </SuccessorText>
</Link>

. . .

<Link>

<SuccessorID> . . . </SuccessorID >

<SuccessorText> . . . </SuccessorText>
</Link>

Each type of semantic link includes a predecessor node and a successor node identified respectively
by the tags ‘PredecessorID’ and ‘SuccessorID’, which are maintained automatically by the SLN-
Builder. The data structure represented by the tag ‘Entity’ describes all the semantic links that are
emitted from the same predecessor node. It can contain one or more types of semantic link, such
as ‘Similar-to’, ‘Sequential’, ‘SubType’ and so on. The tags ‘PredecessorText’ and ‘SuccessorText’
describe textual descriptions of the predecessor node and successor node, respectively. The connection
of semantic links forms a semantic link chain that only ends at a hyperlink. If a semantic link is a
hyperlink, its data structure is organized as follows:

<Entity PredecessorID = string PredecessorText = string>

<ExternalAddress> . . . </ExternalAddress>
<CertaintyFactor> . . . </CertaintyFactor>

</Entity>,

where the tag ‘ExternalAddress’ describes a hyperlink like #introduction or http://kg.ict.ac.cn/.
‘CertaintyFactor’ reflects the belief of the user on establishing the semantic link [21,22].

The data verification component comprises the semantic link verification function and the document
verification function. Because semantic links are stored in the fixed data structure introduced above, if
users make errors when defining semantic links, an invalid data structure may be formed. The semantic
link verification function checks whether semantic links are saved in the correct format. The document
verification function checks the correctness of the resulting document. It is mainly responsible for
checking for the following two errors: (1) checking tag mismatching, which is to ensure that the
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Figure 6. The interface of previewing an image.

resulting document is a well-formed document, i.e. if there is a tag like ‘<Mark>’, then there must be
a corresponding ending tag like ‘</Mark>’; and (2) checking cross-nesting, which means that if there
is a tag ‘T’ contained within another tag pair, the ending tag ‘</T>’ is also contained within the tag
pair. A tag pair is composed of a tag and its corresponding ending tag.

The data storage component is responsible for converting the final semantic link definition into two
types of XML descriptions: document-content XML descriptions and semantic-link XML descriptions.
For searching semantic links easily, document-content XML descriptions and semantic-link XML
descriptions are stored independently. The semantic links in semantic-link XML descriptions can be
accessed through the ID number provided by document-content XML descriptions.

Besides supporting semantic links between document texts, the SLN-Builder also supports semantic
links between images. Users can use the SLN-Builder to embed images and establish semantic links
between images [23]. Figure 6 shows an interface for previewing an image when defining a semantic
link.

4. MATCHING BETWEEN SLNs

The algorithm for matching between SLNs is the basis for determining the inclusion relationship
between SLNs. In the following discussion, we assume that there are no repeated semantic links
between the same node pair and that both vertex set and edge set of a SLN are not empty.
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Figure 8. A full induced sub-semantic network of G Gv(V ).

Definition 1. Let G = (V ,E) be a SLN, G′ = (V ′, E′) be a subgraph of G = (V ,E). For every
edge e = e(x, y) ∈ E, if x ∈ V ′ and y ∈ V ′, then e ∈ E′, we call G′ = (V ′, E′) a full induced
sub-semantic-graph of G with vertex set V ′, denoted as GV (V ′).

Definition 2. A SLN G can be expressed in a SLN-matrix denoted as M(G). Every element in M(G) is
an empty set or a set of semantic factors in {ce, imp, st, sim, ins, seq, ref }. The node sequence of rows
and columns of M(G) is the same.

Take the SLN G in Figure 7 as an example, GV (V ′) shown in Figure 8 is the full induced sub-
semantic graph of G with V ′ = {A, B, D}. The SLN-matrix of G is M(G) (see Figure 9), which is
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M(G) =




null {seq, ref } {ce, sim} null null
{sim} null null {ce} null
{ref } null null null {seq}
{st} {ref } null null {seq}
null null null {imp} null




Figure 9. The SLN-matrix of the SLN G.

composed of five columns and five rows, i.e. A, B, C, D and E in sequence. The null element in M(G)

means empty set.
The relationship between an order pair of SLNs 〈G,G′〉 (G = (V ,E) and G′ = (V ′, E′)) includes

five types: intersection, empty, equal, inclusion and inverse inclusion as follows

(a) Intersection: there is at least one element that is contained in both E and E′.
(b) Empty: the intersection of E and E′ is an empty set.
(c) Equal: every element in E is also in E′, and every element in E′ is also in E.
(d) Inclusion: every element in E is also in E′.
(e) Inverse inclusion: every element in E′ is also in E.

The relationship between G and G′ can be determined according to the following steps.

(1) Let Vint = V ∩ V ′, and G1 and G2 be their full induced sub-semantic networks with vertex set
Vint. Let G1 = G1(Vint, E1) = GV (Vint) and G2 = G2(Vint, E2) = G′

V ′(Vint). The relationship
between G1 and G2 can be determined by algorithm Rel SLN Vertex, which is also suitable for
determining the relationship between any two networks that have the same vertex set.

(2) According to the relationship between G1 and G2, the relationship between G and G′ can be
determined by algorithm Rel SLN.

Definition 3 (subtraction operation of SLN-matrix). For two SLNs G = (V ,E) and G′ = (V ′, E′), if
V = V ′, let R(G) be the result matrix of subtraction operation, R(G) = M(G) − M(G′).

R(Gi,j ) = M(Gi,j ) − M(G′
i,j ) =

3⋃
i=1

Wk
i , k = 0, 1

where Wk
i can be obtained from Table I.

Ri,j (G) = {“0”} means that there is at least one element that is contained in both Mi,j (G) and
Mi,j (G

′). Ri,j (G) = {“+”} means that there is at least one element that is contained in Mi,j (G) but
not in Mi,j (G

′). Ri,j (G) = {“−”} means that there is at least one element that is contained in Mi,j (G
′)

but not in Mi,j (G).

Based on the above definitions, Algorithm 1 can be introduced to determine the relationship between
two SLNs.
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Table I. The value of Wk
i .

W0
1 W1

1 W0
2 W1

2 W0
3 W1

3

null {“0”} null {“+”} null {“−”}

Rel SLN Vertex (SLN G1, SLN G2){
// G1 = G1(V ,E1) and G2 = G2(V ,E2) are semantic link networks, M(G1) and M(G2) are
n × n SLN matrices.
Pre Process(M(G1), M(G2)); // establish corresponding relationship between SLN nodes
and the rows or columns of SLN-matrix and also establish the corresponding relationship
between rows and columns of two SLN-matrices.
Subtract(M(G1), M(G2), R(G)); // R(G) = M(G1) − M(G2)

RtnStr = Result(R (G));
return RtnStr; // the returned value belongs to {“intersection”, “empty”,

“equal”, “inclusion”, “inverse inclusion”}
}

Algorithm 1. The algorithm of Rel SLN Vertex.

Subtract(MATRIX M(G1), MATRIX M(G2), RESULT MATRIX R(G)){
//Precondition: the vertex set of G1 is the same as G2.
//Input: M(G1) and M(G2) are two SLN-matrices
//Output: R(G): R(G) = M(G1) − M(G2)

Initialize(R(G)); // let every element of R(G) be null.
if (V 1 != V 2) return;
for every Ri,j (G){

if (there exists an element that is contained in both Mi,j (G1) and Mi,j (G2))

Add “0” to Ri,j (G);
if (there exists an element that is only contained in Mi,j (G1) but not contained in Mi,j (G2))

Add mark “+” to Ri,j (G);
if (there exists an element that is only contained in Mi,j (G2) but not contained in Mi,j (G1))

Add mark “−” to Ri,j (G);
}

}

Algorithm 2. The algorithm of Subtract.
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1464 H. ZHUGE, R. JIA AND J. LIU

Result(RESULT MATRIX R(G)){
Zero = Plus = Sub = 0;
for every Ri,j (G){

if (Zero == 0 && “0” is contained in Ri,j (G)) Zero = 1;
if (Plus == 0 && “+” is contained in Ri,j (G)) Plus = 1;
if (Sub == 0 && “−” is contained in Ri,j (G)) Sub = 1;

}
if (Zero == 0) return “empty”;
if (Zero == 1 && Plus == 1 && Sub == 0) return “inverse inclusion”;
if (Zero == 1 && Plus == 1 && Sub == 1) return “intersection”;
if (Zero == 1 && Plus == 0 && Sub == 0) return “equal”;
if (Zero == 1 && Plus == 0 && Sub == 1) return “inclusion”;

}

Algorithm 3. The algorithm of Result.

Rel SLN(SLN G1, SLN G2){
if (V 1 == V 2) return Rel SLN Vertex(G1,G2);
if (V 1 ⊂ V 2) {

Let G3 = G3(V 1, E3) = G2V 2(V 1);
Rtn = Rel SLN Vertex(G1,G3);
if (Rtn == “empty” || Rtn = “inclusion”) return Rtn;
if(Rtn == “equal”) return “inclusion”;
if((Rtn == “intersection”) || (Rtn == “inverse inclusion”)) return “intersection”;

}
if (V 1 ⊃ V 2) {

Let G3 = G3(V 2, E3) = G1V 1(V 2);
Rtn = Rel SLN Vertex(G2, G3);
if (Rtn == “empty”) return Rtn;
if((Rtn == “inclusion”) || (Rtn == “equal”)) return “inverse inclusion”;
if((Rtn == “intersection”) || (Rtn == “inverse inclusion”)) return “intersection”;

}
Let Vint = V 1 ∩ V 2; // let Vint be the intersection of set V 1 and V 2
if Vint == � return “empty”;
if Vint 
= �{

Let G3 = G3(Vint, E3) = G1V 1(Vint) and G4 = G4(Vint, E4) = G2V 2(Vint);
Rtn = Rel SLN Vertex(G3, G4);
if Rtn == “empty” return “empty”;
if (Rtn != “empty”) return “intersection”;

}
}

Algorithm 4. The algorithm of Rel SLN.

Based on Algorithm 1, Algorithm 4 determines the relationship between any two SLNs G1 =
G1(V 1, E1) and G2 = G2(V 2, E2) and returns a value belonging to {“intersection”, “empty”,
“equal”, “inclusion”, “inverse inclusion”}.
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According to the relationship returned by Algorithm 4, we can find the SLN that contains richer
semantics. For example, if the returned value is ‘inclusion’, then G2 has richer semantics; if the
returned value is ‘inverse inclusion’, then G1 contains richer semantics. The proof of the correctness
of the basic algorithm Rel SLN Vertex will be given in Appendix B.

5. MATCHING BETWEEN HYPER-SLNs

A Hyper-SLN includes the complex node—a node itself is a SLN. Algorithm 4 only applies to the
SLN consisting of atomic nodes. Algorithm 5 is used to determine the relationship between Hyper-
SLNs. Rel HyperSLN first uses Rel SLN to determine the relationship between SLNs by viewing all the
complex nodes as atomic nodes, and then determines the relationship between corresponding complex
nodes by calling Rel HyperSLN recursively.

Supposing the names of nodes in a SLN are different from each other in the sense of ontology,
Algorithm 6 establishes the correspondence relationship between the nodes in G1 and G2.

6. SLN REASONING

The SLN reasoning can be carried out in either large granularity or small granularity modes. Large
granularity reasoning aims to discover the SLN with the richest semantics among a set of SLNs
based on the matching algorithm Rel SLN. For a given SLN set S = {G1,G2, . . . ,Gn}, Algorithm 4
can obtain a set of SLNs that have the relationship ‘inclusion’ or ‘inverse inclusion’. Suppose that
{Gs1,Gs2, . . . ,Gsm} (1 � si � n, 1 � i � m) is the matching result that satisfies Gs1 ⊆ Gs2 ⊆
· · · ⊆ Gsm. So when users want to get semantic information from Gsi, Gsm can be used to replace
Gsi(i = 1, 2, . . . ,m − 1) in applications. However, Algorithm 5 should be used to replace Rel SLN
for reasoning in case there are complex nodes in SLNs.

Small granularity reasoning means that a semantic link in a SLN can deduce a semantic link chain
according to the chaining rules of the semantic links. A semantic link can be the following primitive
types: cause-effective link (denoted as ce), implication link (denoted as imp), subtype link (denoted
as st), similar-to link (denoted as sim), instance link (denoted as ins), sequential link (denoted as seq),
and reference link (denoted as ref ).

Reasoning rules of small granularity reasoning are constructed by the transitive characteristic and
implication characteristic. The transitive characteristic applies to the same type reasoning. For example,
if we have two semantic links d—ce → d ′ and d ′—ce → d ′′, we can get the reasoning result d—
ce → d ′′ according to the transitive characteristic of the cause-effective link. So the above reasoning
process can be represented as the following reasoning rule: d–ce → d ′, d ′—ce → d ′′ => d—
ce → d ′′.

If the types of the two semantic links are different, the reasoning process is carried out according
to the implication characteristic, for example, if we have two semantic links d—ce → d ′, and
d ′—imp → d ′′, the following reasoning result holds: d—ce → d ′′ according to the implication
characteristic. This reasoning process can be represented as the following reasoning rule d—ce → d ′,
d ′—imp → d ′′ => d—ce → d ′′. However, several types of semantic links have the implication
characteristic as introduced in [20].
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Rel HyperSLN(SLN G1, SLN G2){
Pre Process(G1,G2);
String Rtn = Rel SLN(G1,G2);// view complex nodes as atomic nodes.
if ( (Rtn == “empty”) || (Rtn == “intersection”)) return Rtn;
Let V 1join = V 2join = Vjoin = V 1 ∩ V 2;
Suppose V 1join = {V 1j1, V 1j2, . . . , V 1jm} and V 2join = {V 2j1, V 2j2, . . . , V 2jm}; //V 1ji = V 2ji , i ∈ [1,m].
if ( Rtn == “inclusion”){

for every V 1ji (i = 1, 2, . . . , m){
if ((V 1ji is a complex node and V 2ji is an atomic node) || (V 1ji is an atomic node and

V 2ji is a complex node)) return “intersection”;
if (V 1ji is a complex node and V 2ji is a complex node){

Let G3 = G3(V 3, E3) be the SLN expanded by the complex node V 1ji ;
Let G4 = G4(V 4, E4) be the SLN expanded by the complex node V 2ji ;
String subRtn = Rel HyperSLN(G3,G4);
if ((subRtn != “equal”) && (subRtn != “inclusion”)) return “intersection”;

}
}// end for
return “inclusion”;

}
if ( Rtn == “inverse inclusion”){

for every V 1ji (i = 1, 2, . . . , m){
if ((V 1ji is a complex node and V 2ji is an atomic node) || (V 1ji is an atomic node and

V 2ji is a complex node)) return “intersection”;
if (V 1ji is a complex node and V 2ji is a complex node){

Let G3 = G3(V 3, E3) be the SLN expanded by the complex node V 1ji ;
Let G4 = G4(V 4, E4) be the SLN expanded by the complex node V 2ji ;
String subRtn = Rel HyperSLN(G3,G4);
if((subRtn!=“equal”)&&(subRtn !=“inverse inclusion”)) return “intersection”;

}
}// end for
return “inverse inclusion”;

}
BOOL bEqual = bInc = bUnInc = FALSE;
if ( Rtn == “equal”){

for every V 1ji , (i = 1, 2, . . . , m){
if ((V 1ji is a complex node and V 2ji is an atomic node) || (V 1ji is an atomic node

and V 2ji is a complex node)) return “intersection”;
if (V 1ji is a complex node and V 2ji is a complex node){

Let G3 = G3(V 3, E3) be the SLN expanded by the complex node V 1ji ;
Let G4 = G4(V 4, E4) be the SLN expanded by the complex node V 2ji ;
String subRtn = Rel HyperSLN(G3,G4);
if ((subRtn == “empty”)||(subRtn == “intersection”)) return “intersection”;
if ((!bEqual) && (subRtn == “equal”)) bEqual = TRUE;
if ((!bInc) && (subRtn == “inclusion”)) bInc = TRUE;
if ((!bUnImp) && (subRtn == “inverse inclusion”)) bUnInc = TRUE;

}
}// end for
if ((bEqual ) && (!bInc) && (!UnInc)) return “equal”;
if ((bInc) && (!bUnInc)) return “inclusion”;
if ((bUnInc) && (!Inc)) return “inverse inclusion”;

}
}

Algorithm 5. Algorithm Rel HyperSLN inputs Hyper-SLNs G1 = G1(V 1, E1) and G2 = G2(V 2, E2), and then
returns a string belonging to {“empty”, “intersection”, “equal”, “inclusion”, “inverse inclusion”}.
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Pre Process(SLN G1, SLN G2){
For every node N in G1{

if (there exists a corresponding node N ′ in G2 whose name has the same meaning as
N in the sense of ontology)

Establish the corresponding relationship between N and N ′;
}

}

Algorithm 6. The algorithm of Pre Process.

7. INTELLIGENT BROWSER

7.1. Implementation of reasoning mechanism

We use the following data structure to support reasoning:

<Entity PredecessorID = string PredecessorText = string>

<ExternalAddress> . . . </ExternalAddress>
<CertaintyFactor> . . . </CertaintyFactor>
SR

</Entity>,

where SR denotes the ‘SemanticRelation’ data structure described in Section 3, Entity =
(ExternalAddress & CertaintyFactor) | SR, and ‘ExternalAddress’ is used to determine whether the
semantic link is an inter-document link that supports inter-document reasoning.

The reasoning process starts from a semantic link whose successor node points to a hyperlink.
For a specific semantic link l1: d—sim → d ′ in an XML file, the reasoning process aims to
find all the semantic links from the local XML descriptions. All these semantic links have the
‘similar-to’ relationship and they are deduced from d ′. Using the tag ‘SuccessorID’ of d’, the
reasoning mechanism finds the data structure DT1 in which all the semantic links take d ′ as their
predecessor node. If there is no tag ‘ExternalAddress’ in DT1, all the semantic links in DT1 that
have a ‘similar-to’ relationship are put into the stack InDocStack. These semantic links are marked
as l2, . . . , ln. If there exists the tag ‘ExternalAddress’ in DT1, the destination address represented
by ‘ExternalAddress’ is analyzed as follows: if the destination address does not end up with
‘MENU’ plus ID such as ‘MENU1001’, the semantic link cannot be used for reasoning and it
should be added to the reasoning result set RS. If the destination address ends up with ‘MENU’
plus ID, such as ‘knowledgegrid.html#knowledgeMENU1001’, the following reasoning process is
carried out. The reasoning mechanism extracts the information about the destination file name like
‘knowledgegrid.html’ and the ID like ‘1001’ that identifies the predecessor node of a semantic link in
the destination XML file according to the destination address of the hyperlink, then it puts the above
information into stack OutDocStack. At the same time, l1 is added to the reasoning result set RS.
If InDocStack is not empty, it pops up the top element l2. The reasoning process of l2is the same as l1.
The reasoning process stops until InDocStack becomes empty. Then, OutDocStack pops up the top
element for reasoning when it is not empty. The reasoning process of the top element is the same as l1.
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Figure 10. Sketch map of the inter-document and intra-document reasoning process.

The reasoning process stops until both InDocStack and OutDocStack become empty. All the semantic
links deduced from d ′ of l1 are included in the reasoning result RS. Figure 10 shows a sketch map of
the reasoning process.

7.2. HTML Converter and browser interface

The HTML Converter is a component that converts XML descriptions into HTML files. It uses a
template file that is responsible for parsing all tags in the XML files and converting document contents
and semantic links into Web pages so that the ordinary Web browser can browse them. While browsing,
the user can obtain rich semantics displayed by the converted Web pages shown in Figures 12 and 13.

The intelligent semantic browser provides users with three types of interface: the image-link-based
interface, the non-reasoning-based interface and the reasoning-based interface. In case the XML
descriptions contain some semantic links between images, the HTML Converter can convert them
into Web pages containing image information. The intelligent semantic browser provides users with an
image link interface as shown in Figure 11. In case a document defined by the SLN-Builder does not
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Figure 11. Interface that displays semantic links on image.

 

Figure 12. Non-reasoning interface.
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Figure 13. Reasoning interface.

contain any reasoning information, the Web pages converted by the HTML Converter will be displayed
by a non-reasoning interface as shown in Figure 12. In case a document contains reasoning information,
the Web pages converted by the HTML Converter will be displayed by a reasoning interface as shown
in Figure 13.

8. CONCLUSION AND ONGOING WORK

The SLN is the natural and smooth extension of the Web’s hyperlink network. This paper presents the
implementation of the SLN-Builder and the Intelligent Semantic Browser. The SLN-Builder enables
users to conveniently develop the semantic-link-based ‘Web’, which includes richer semantics than the
hyperlink-based Web. The semantic links support intelligent, efficient and precise information service.
The intelligent semantic browser can find the semantic rich SLN in a set of SLNs and provide the users
with a corresponding semantic link chain when they browse a SLN. The large granularity reasoning is
based on the SLN matching algorithms. The small granularity reasoning is carried out according to the
transitive and implication characteristics of semantic links. In Appendix A, we present the approach to
realize the union of two SLNs, which enables semantic integration and a single semantic image when
browsing a large-scale SLN [24]. The proposed approach is a new attempt towards the semantic Web
by means of the smooth extension of the Web and establishing the computing model. The research
results on the hyperlink Web such as the link analysis and page rank algorithm have paved the road
ahead for SLN due to such a smooth extension.
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We have noticed that the representation of a large-scale SLN requires a large matrix. Although the
SLN-matrix records the information on semantic links and not the entities of Web pages, a lighter
representation mechanism is worth considering. One approach to solving this issue is to transform the
sparse SLN-matrix into a special vector that contains no empty elements, and the other approach is to
transform the sparse SLN-matrix into several small full SLN-matrices.

Ongoing work includes realizing more types of reasoning like analogical reasoning and abstraction-
based SLN operations investigating the physical level implementation and the transformation between
RDF and SLN, and applying the proposed approach to online education and e-science based on the
peer-to-peer networking mode.

APPENDIX A. UNION OPERATION OF SLN

Union operation of SLNs is a kind of semantic integration, which can integrate small-granularity
semantic components into a large granularity semantic component. The union operation is useful in
forming a complete semantic image (i.e. ‘single semantic image’ [24]) during browsing and reasoning.
The algorithm Union SLN that realizes the union operation is presented as follows.

Definition 4. For two semantic link networks G1 = G1(V 1, E1) and G2 = G2(V 2, E2), the union
of G1 and G2 (denoted as G1 ∪ G2) is also a SLN. Let G3 = G3(V 3, E3) be G1 ∪ G2, G3 can be
constructed by the following steps.

(1) View all the nodes in G1 and G2 as atomic nodes, V 3 = V 1 ∪ V 2 and E3 = E1 ∪ E2.
(2) If a node V 1c ∈ V 1 is a complex node, and V 1c /∈ V 1 ∩ V 2, then the SLN expanded by V 1c

constructs the SLN expanded by the complex node V 3c (corresponding to V 1c) of G3.
(3) If a node V 2c ∈ V 2 is a complex node, and V 2c /∈ V 1 ∩ V 2, then the SLN expanded by V 2c

constructs the SLN expanded by the node V 3c (corresponding to V 2c) of G3.
(4) If a node Vc ∈ V 1 ∩ V 2 is a complex node, let G1V c,G2V c be the SLNs expanded by Vc in V 1

and V 2, respectively. Let V 3c ∈ V 3 be the complex node corresponding to Vc and G3V 3c be the
SLN expanded by V 3c. Then we have G3V 3c = G1V c ∪ G2V c.

Take the SLNs shown in Figures A1–A3 for example. For two SLNs G1 and G2, the union of G1
and G2 is shown in Figure A3. The SLN matrices of G1, G2 and G1 ∪ G2 are M(G1),M(G2) and
M(G1 ∪ G2), as shown below:

M(G1) =

A C D B

A null {sim, ce} {ce} {ins, ce}
C seq null {seq, imp} null
D null null null {ref , st}
B null null null null

M(G2) =

A E C F B

A null {sim} {seq} null {ce, ref , st}
E null null null null {seq}
C null {imp} null null null
F null {sim, seq} null null null
B null null null {ce, ins} null
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M(G1 ∪ G2) =

A C D B E F

A null {sim, ce, seq} {ce} {ins, ce, ref , st} {sim} null
C {seq} null {seq, imp} null {imp} null
D null null null {ref , st} null null
B null null null null null {ce, ins}
E null null null {seq} null null
F null null null null {sim, seq} null

Figure A1. A semantic link network G1.
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Figure A2. A semantic link network G2.
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Figure A3. A semantic link network G1 ∪ G2.

Union SLN(SLN G1, SLN G2, SLN G3){
Vint = V 1 ∩ V 2;
d = |V 1| + |V 2| − |Vint|;
V 3 = V 1 ∪ V 2;
Let L1, L2 and L3 be arrays with one dimension;
Set all the nodes in V 1, V 2, and V 3 to array L1, L2, and L3 respectively and ensure each
location of Li only contains one node;
Initialize(M(G3)); // M(G3) is a d × d SLN-matrix, every Mi,j (G3) is set to null
For every Mi,j (G3)(1 � i � d, 1 � j � d){

Let Node i = L3[i] and Node j = L3[j ];
if (both Node i and Node j belong to Vint ) {

Let V 1 i, V 1 j, V 2 i, V 2 j satisfy the following equations:
Node i = L1[V 1 i], Node j = L1[V 1 j ], Node i = L2[V 2 i], Node j = L2[V 2 j ];
Mi,j (G3) = Mv1 i,v1 j (G1) ∪ Mv2 i,v2 j (G2);// union two sets.

}
if (only one node belongs to Vint){

Suppose that another node belongs to Vk ; //k belongs to {1, 2}
Node i = Lk[V k i], Node j = Lk[V k j ];
Mi,j (G) = Mvk i,vk j (Gk);

}
if (neither Node i or Node j belongs to Vint){

if (both Node i and Node j belong to Vk){//k belongs to {1, 2}
Let V k i and V k j satisfy the equations: Node i = Lk[V k i], Node j = Lk[V k j ];
Mi,j (G) = Mvk i,vk j (Gk);

}
if(Node i and Node j are not in the same SLN) Mi,j (G3) = null;

}
}//end for

}
Algorithm A1. The algorithm Union SLN for the union of two SLNs.
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Union HyperSLN(SLN G1, SLN G2, SLN G3){ //G3 = G1 ∪ G2;
Pre Process(G1, G2); //refer to the definition of Pre Process in Section 5.
Let Vint = V 1 ∩ V 2;
Union SLN(G1,G2,G3); //view complex nodes in G1 and G2 as atomic nodes.
For every complex node cNode in G3 {// union operation between complex nodes.

If( cNode belongs to Vint){
Let G4 = G4(V 4, E4) be the SLN expanded by the complex node cNode in V 1;
Let G5 = G5(V 5, E5) be the SLN expanded by the complex node cNode in V 2;
Let G6 = G6(V 6, E6) be the SLN expanded by the complex node cNode in V 3;
String Rtn = Rel HyperSLN(G4,G5);
If (Rtn == “equal”) Let G6 = G4;
If (Rtn != “equal”)

Rename cNode in V 1 and V 2 as different node names;
Union HyperSLN(G1,G2,G3,); //since the SLNs are changed, the union
operation must be carried out from the beginning.

}
if( cNode only belongs to Vk){ //k belongs to {1,2}

Let GVk,cNode = GVk,cNode(VVk,cNode, EVk,cNode) be the SLN expanded by the complex
node cNode in Vk;
Let GV 3,cNode = GV 3,cNode(VV 3,cNode, EV 3,cNode) be the SLN expanded by the complex
node cNode in V 3;
Let GV 3,cNode = GVk,cNode;// GV 3,cNode is set to GVk,cNode.

}
}//end for

}

Algorithm A2. The algorithm Rel HyperSLN for determining the relationship between two hyper-SLNs.
The algorithm Union SLN only applies to the SLNs consisting of atomic nodes. For semantic link networks
including complex nodes, the following algorithm Union HyperSLN is used to the union of SLNs. The algorithm
Union HyperSLN includes two steps: (1) it first views the complex nodes in two networks as atomic nodes, and

then uses Union SLN to union them, and (2) it uses Rel HyperSLN to decide how to union complex nodes.

APPENDIX B. THE PROOF OF THE CORRECTNESS OF Rel SLN Vertex

The basic algorithm Rel SLN Vertex is correct.

Proof. We can say the algorithm is correct if we can prove the relationship that is deduced from the
value of Zero in the function Result is just the relationship that the function Result returns. Since the
relationship between two SLNs only includes five types, we can prove the correctness of the algorithm
according to the following five cases.

(1) Empty—Zero = 0. According to the function Result, Zero = 0 indicates that element ‘0’
is not contained in any Ri,j (G), which implies that there is no element that is contained in
both Mi,j (G) and Mi,j (G

′) according to the function Subtract and the definition of Ri,j (G).
According to the definition of the ‘empty’ relationship, we can say that Zero = 0 really means
that the intersection of the edge sets of G and G′ is ‘empty’.

(2) Inverse inclusion—Zero = 1, Plus = 1 and Sub = 0. According to the function Result, Sub
= 0 indicates that element ‘−’ is not contained in any Ri,j (G), which implies that there is no
element that is contained in Mi,j (G

′) but not in Mi,j (G) according to the function Subtract and
the definition of Ri,j (G). So all the edges of G′ must be contained in G.
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According to the function Result, Plus = 1 indicates that there is at least one element Ri,j (G)

that contains element ‘+’, which implies that there is an edge that is contained in Mi,j (G) but
not in Mi,j (G

′) according to the function Subtract and the definition of Ri,j (G). So there is at
least one edge that is contained in G but not in G′.
According to the conclusion of (1), Zero = 1 means that the intersection of the edge set of G and
G′ is not empty. According to the above conclusions and the definition of the ‘inverse inclusion’
relationship, we can conclude that ‘Zero = 1&&Plus = 1&&Sub = 0’ really means by ‘inverse
inclusion’.

(3) Inclusion—Zero = 1, Plus = 0, and Sub = 1. According to the function Result, Sub = 1 indicates
that there is at least one element Ri,j (G) that contains element ‘−’, which implies that there is
an element that is contained in Mi,j (G

′) but not in Mi,j (G) according to the function Subtract
and the definition of Ri,j (G). Hence, there is at least one edge that is contained in G′ but not
in G.
According to the function Result, Plus = 0 indicates that element ‘+’ is not contained in any
Ri,j (G), which implies that there does not exist any element that is contained in Mi,j (G) but
not in Mi,j (G

′) according to the function Subtract and the definition of Ri,j (G). Hence, all the
edges of G must be contained in G′.
According to (1), Zero = 1 means that the intersection of the edge set of G and G′ is not empty.
According to the conclusions introduced above and the definition of the ‘inclusion’ relationship,
we can conclude that ‘Zero = 1&&Plus = 0&&Sub = 1’ really means by ‘inclusion’.

(4) Intersection—Zero = 1, Plus = 1, and Sub = 1. According to (2) and (3), Sub = 1 means that
there is at least one edge that is contained in G′ but not in Gand Plus = 1 means that there is at
least one edge that is contained in G but not in G′. According to the conclusion of (1), Zero = 1
means that the intersection of the edge set of G and G′ is not empty. According to the conclusions
introduced above and the definition of the ‘intersection’ relationship, we can conclude that ‘Zero
= 1&&Plus = 1&&Sub = 1’ really means by ‘intersection’.

(5) Equal—Zero = 1, Plus = 0, and Sub = 0. According to (2) and (3), Sub = 0 means all the edges
of G′ are contained in G and Plus = 0 means all the edges of G are contained in G′. According
to the conclusion of (1), Zero = 1 means that the intersection of the edge set of G and G′ is not
empty. According to the above conclusions and the definition of the ‘equal’ relationship, we can
conclude that ‘Zero = 1&&Plus = 0&&Sub = 0’ really means by ‘equal’.
Since the relationship derived from the above five cases is the same as the returned corresponding
relationship, we can conclude that the algorithm Rel SLN Vertex is correct.
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