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Abstract

Model is a kind of codified knowledge that has been verified in solving problems. Solving a complex problem usually needs a set of
models. Using components, the composition of a set of closely related models, could enhance the efficiency of solving problems as
components are experience in form of knowledge network. Mappings between components vary with the relevancy of problems. Such
mappings can help retrieve appropriate components when solving new problems. This paper investigates the relationship between
components to identify these mappings by a set of semantic links and develops relevant rules to form a mechanism for semantically
networking and using components. Flexible component reuse can be realized by semantic retrieval and rule reasoning. Extending the
notion of component to a general service mechanism, this paper further investigates the organization, reuse and clustering of components
in form of Web services and research spaces. The semantic component networking overlay supports intelligent e-Science Knowledge Grid
applications by the synergy of static reuse and dynamic clustering of various research spaces and resources on-demand.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Different from tacit knowledge, explicit knowledge can
be codified for reuse and sharing. Concept, axiom, rule,
method, and theory are codified knowledge. Model is a
kind of codified knowledge that has been verified in solving
problems.

Solving a complex problem in some areas (e.g., making a
large-scale military plan) usually needs the synergy of a set
of models. People have the tendency to use existing solu-
tions or experience rather than to find appropriate models
and then to compose them during problem-solving. A
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component is a type of problem-solving experience—a net-
work of codified knowledge for solving a complex problem.

The component-based problem-solving has three main
advantages: (1) Problem-oriented. People can concentrate
on problem analysis and making problem abstraction so
as to hold the key to the problem. Otherwise, people have
to focus on local problems and deal with technical details.
(2) Efficient. It is more efficient to use components rather
than to retrieve solutions and to compose them when mak-
ing decisions. (3) Experience-based. A component encapsu-
lates problem-solving experience, which can be used when
solving new problems.

This paper investigates a general component methodol-
ogy from the following aspects:

(1) The semantic relationships between components and
relevant logical mechanism for flexible component
reuse.
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(2) A component overlay that supports flexible compo-
nent reuse.

(3) The effectiveness and efficiency of the component
overlay in supporting problem-solving.

(4) The synergy of the static reuse and dynamic cluster-
ing of components to form a scalable high-level
semantic overlay for the Knowledge Grid.

Previous model base structures include the OO (Object-
Oriented) models (Lenard, 1993; Novak, 1997; Rumb-
augh et al., 1991), the frame structure model (Dolk and
Konsynski, 1984), the network and relational models
(Blanning, 1993), the knowledge-based structure model
(Yau and Tsai, 1987), and the modelling language repre-
sentation model (Hong et al., 1993). The OO models
support a class-based inheritance, which facilitates the
incremental definition of models and reuse of models.
But, the implementation of the inheritance mechanism
depends on the implementation language used (i.e.,
OOPL, Object-Oriented Programming Language). Unfor-
tunately, many existing mathematical models are ‘flat’
and ‘standard’ (e.g., FORTRAN-based MSL/Math) due
to domain-specific features. These models are difficult
to be reengineered by using OOPLs or to be imple-
mented as the OO paradigm by using non-OOPLs. The
CORBA (Common Object Request Broker Architecture,
http://www.omg.org/corba) and COM/DCOM (Common
Object Model/Distributed Common Object Model,
http://www.microsoft.com/com/) are system-level and
language-irrelevant component interface standards, but
they do not have the mechanism for reuse. Traditional
model bases provide users or applications with exact
retrieval mechanism. Efforts have been made to relax
the exact retrieval, for example, the flexible model retrie-
val (Zhuge, 1998) and the flexible Web service (distributed
deployment and execution of models) retrieval (Zhuge
and Liu, 2004).

Experts are good at finding and using not only the
relationships between problems but also the relationships
between past experiences during problem-solving. To
achieve this effect in problem-solving support systems,
this paper proposes a set of basic semantic links between
components to specify different extents and different
views that may apply to when one component uses
another component. A new component can be created
by using an existing component from different views
and to different extents. Based on these semantic links,
a set of reasoning rules and a set of operation rules are
developed for component reuse. A rule reasoning mech-
anism is developed to search for a proper component
in a candidate set. To increase the flexibility of compo-
nent reuse, an inexact factor (similarity degree) can be
incorporated into the semantic link, and propose the
corresponding rule reasoning formalism. The semantic
links are used to construct multiple semantic overlays,
which are language irrelevant and can support advanced
applications.
2. Semantic links

2.1. Definition

A component can be specified by: a name (identifier), a
signature (interface), and its implementation. The name
reflects its behaviour category (Boisvert et al., 1985). The sig-
nature represents a mapping from the input type into the
output type of the component. The implementation of a
component is a network C = hN,E,Ri, where N is a set of
nodes (the building blocks of the component), E is a set of
edges (the relationship between nodes), R is a set of restric-
tions on N and E. A view of the component C, denoted as
View(C), is a sub-graph of the implementation network.

An edge can be regarded as a flow between two nodes. It
includes the following six types: (1) sequential dependence
(SD), i.e., one node is executed after another; (2) condi-
tional sequential dependence (CSD), i.e., SD only occurs
under a condition; (3) data dependence (DD), i.e., the input
of one node depends on the output of the other; (4) condi-
tional data dependence (CDD), i.e., DD only occurs under
a condition; (5) function dependence (FD), i.e., a node is
implemented by calling the functions of the other nodes;
and, (6) conditional function dependence (CFD), i.e., FD

occurs under a condition. We use T(e) to denote the type
of edge e,T(e) 2 {SD,CSD,DD,CDD,FD,CFD}. Gener-
ally, we use ‘n1 � � �T(e)� � �! n2’ to denote ‘n1 depends on
n2 with type T(e)’. A node can have an input restriction,
which is either the ‘AND’ or the ‘OR’ of its input flows.
A node can also have an output restriction, which is either
the ‘AND’ or the ‘OR’ of its output flows.

Let C 0  a! C be an isomorphism from component
C 0 = hN 0,E 0,R 0i into C = hN,E,Ri, a can be a mapping
or a set of transformation function a = (a1,a2, . . . ,ak),
and for any n 2 N and n 0 2 N 0, there exists an ai 2 a such
that ai(n

0) = n. For an onto mapping from C = hN,E,Ri
into C 0 = hN 0,E 0,R 0i,C —b! C 0, b = (b1,b2, . . . ,bk), and
for any view(C 0) 2 N 0, there exists a view(C) such that
b(view(C)) = view(C 0). A view can be a node or a network.

Definition 1. A semantic link between components C

(ancestor) and C 0 (descendent) is defined by: (1) if
C 0  a! C, then we say that C 0 is isomorphism with C,
denoted as C 0 —Ia! C; (2) if there exists a View(C 0), such
that View(C 0) a! C, then we say that C 0 totally contains
C with a, denoted as C 0 —Ta! C; (3) if there exists a
View(C) such that C 0  a! View(C), then we say that C 0

partially contains C with a, denoted as C 0 —Pa! C; (4) if
there exist View(C) and View(C 0), such that View

(C 0) a! View(C), then we say that C 0 reduces together
with C under a, denoted as C 0 —Ra! C; and, (5) if there
does not exist a View(C) and a View(C 0), such that
View(C 0) a! View(C), then we say that C 0 is irrelevant
to C under a, denoted as C 0 —·! C.

Except empty, the other semantic factors (mapping or
transformation) can be attached to a condition of behav-
iour compatibility, i.e., whether a descendant is behaviour
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Fig. 1. A semantic link between two components. Legend: ak: semantic
link between Mik and Mjk (k = 1, 2, 3), a = (a1,a2,a3), Pa: partial semantic
link between Ci and Cj.
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Fig. 2. Order of the semantic link relationship.
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compatible with the ancestor or not (Zhuge, 1998). We
herein add a letter ‘B’ in front of these factors to denote
the condition. Then, the factor set of the semantic link
is extended as: {BIa, Ia,BTa,Ta,BPa,Pa,BRa,Ra,·}. A
semantic link example is shown in Fig. 1, where Ci is imple-
mented by composing four models (Mi1, Mi2, Mi3, and Mi4)
with the data dependence and sequential dependence rela-
tionship, and Cj is implemented by composing three models
(Mj1, Mj2, and Mj3) with data dependence relationship. If
Mim —ai!Mjn holds for m,n = 1, 2, 3, and then we have:
Ci —Pa! Cj, a = (a1,a2,a3).

The semantic link is defined in terms of how (totally or
partially) the descendant takes after the ancestor, and
whether new nodes or edges have been added to the descen-
dant or not. It can reflect a kind of relationship between
any two components from different views. For example, a
component C 0 takes after another component C with two
different mappings: a and a 0, i.e., C 0 —Pa! C and C 0 —
Pa 0! C can be both hold.
2.2. The order of semantic links

Let ‘6’ be the order on the extended semantic factor set
(e.g., Ra 6 BRa means that BRa is stronger than Ra), we
have the following five orders:

(1) · 6 Ra 6 BRa 6 BPa 6 BIa;
(2) BRa 6 BTa 6 BIa;
(3) Ra 6 Pa 6 Ia 6 BIa;
(4) Ta 6 BTa; and,
(5) Ra 6 Ta 6 Ia.

The order relationship on the semantic factor set is
graphically shown in Fig. 2, where the upper node is stron-
ger than the related lower node. The graph shows that, for
any two elements of the set, there exist a least-upper-bound
(LUB) and a greatest-lower-bound (GLB). Hence, the
relationship ‘6’ constitutes a lattice on the semantic factor
set.

Lemma 1. The order relationship ‘‘6’’ on the set of the

semantic links is a lattice.
3. Rules

3.1. Derivation rules on semantic links

The logical relationships between different semantic
links can be described as rules. According to Definition
1, a set of rules can be formed as shown in Table 1 where
‘,’ denotes logical AND. These rules reflect a kind of reuse
knowledge between components. Rule1–8 represent the
transitive characteristic of the semantic links. Rule9–16
represent the implication relationship between semantic
links. The transitivity rules and implication rules enable
different semantic links to be connected for derivation.
Rule1–16 can be proved according to Definition 1. These
are basic rules that can be used to derive more rules.
Rule17–20 reflect the logical deduction relationship among
semantic links. RA-Rule17–22 can be easily proved accord-
ing to Definition 1 or the basic rule set. In Rule23–24,
C1 —��! C2 means that if C1 is used then C2 is usually
used. C1 —��! (C2,C3) means that C1 is used then C2

andC3 are usually used together.
As an example, we provide the following proof.

Proof of Rule18. Since C1 —BIa! C2) C1 —BTa! C2

(by Rule10), we have the following deduction: C1 —BIa!
C2, C2 —BTa! C3) C1 —BTa! C2, C2 —BTa! C3)
C1 —BTa! C3 (by Rule3). h

More rules can be formed based on Definition 1 or can
be formed by deducing them from existing rules. These
rules can be connected for reasoning purpose. Let b1a1

and b2a2 be two elements of the semantic factor set, and
b1a1 Æ b2a2 denote the connection of b1a1 and b2a2. The
concept of the meaningful connection is defined as follows.

Definition 2. The connection of b1a1 and b2a2 is said to be
meaningful if: (1) there exists b3a3 in the factor set and a
rule C1 —b1a1! C2, C2 —b2a2! C3) C1 —b3a3! C3;
and, (2) if a1 6 a2 then a3 = a1, if a2 6 a1 then a3 = a2,
and if a1 = a2 then a3 = a1 = a2.



Table 1
Semantic link rules

No. Rules Classification

Rule1 C1 —BIa! C2, C2 —BIa! C3) C1 —BIa! C3 Transitive
Rule2 C1 —Ia! C2, C2 —Ia! C3) C1 —Ia! C3 Transitive
Rule3 C1 —BTa! C2, C2 —BTa! C3) C1 —BTa! C3 Transitive
Rule4 C1 —Ta! C2, C2 —Ta! C3) C1 —Ta! C3 Transitive
Rule5 C1 —BPa! C2, C2 —BPa! C3) C1 —BPa! C3 Transitive
Rule6 C1 —Pa! C2, C2 —Pa! C3) C1 —Pa! C3 Transitive
Rule7 C1 —BRa! C2, C2 —BRa! C3) C1 —BRa! C3 Transitive
Rule8 C1 —·! C2, C2 —·! C3) C1 —·! C3 Transitive
Rule9 C1 —BIa! C2) C1 —Ia! C2) C1 —Ta! C2) C1 —Ra! C2 Implication
Rule10 C1 —BIa! C2) C1 —BTa! C2) C1 —BRa! C2 Implication
Rule11 C1 —BIa! C2) C1 —BPa! C2) C1 —BRa! C2 Implication
Rule12 C1 —BTa! C2) C1 —Ta! C2 Implication
Rule13 C1 —BPa! C2) C1 —Pa! C2 Implication
Rule14 C1 —BRa! C2) C1 —Ra! C2 Implication
Rule15 C1 —Ia! C2) C1 —Pa! C2) C1 —Ra! C2 Implication
Rule16 C1 —Ta! C2, C2 —Pa! C3) C1 —Ra! C3 Implication
Rule17 C1 —Ra! C2, C2 —·! C3) C1 —·! C3 Deduction
Rule18 C1 —BIa! C2, C2 —BTa! C3) C1 —BTa! C3 Deduction
Rule19 C1 —BIa! C2, C2 —BPa! C3) C1 —BP a! C3 Deduction
Rule20 C1 —Ia! C2, C2 —Ra! C3) C1 —Ra! C3 Deduction
Rule21 C3 —Ta! C1, C3 —Ta! C2) C3 —Ra! C1, C3 —Ra! C2 Deduction
Rule22 C3 —Pa! C1, C3 —Pa! C2) C3 —Ra! C1, C3 —Ra! C2 Deduction
Rule23 C1 —��! C2, C2 —��! C3) C1 —��! C3 Deduction
Rule24 C1 —��! C2, C2 —��! (C3, C4)) C1 —��! (C3,C4) Deduction
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With Definition 2, the transitivity rule: C1 —b1a1! C2,
C2 —b2a2! C3) C1 —b3a3! C3 can be represented as
b1a1 Æ b2a2) b3a3, i.e., ‘b1a1 connects with b2a2’ implies
b3a3. If we represent the implication rule: C1 —
b1a1! C2) C1 —b2a2! C2 as b1a1) b2a2, then we can
produce the following lemma by summarizing the rules of
Table 1.

Lemma 2. Let b1a1 Æ b2a2 be a meaningful connection of two

semantic links. If b1a1 is weaker than b2a2 (i.e., b1a1 6 b2a2),

then b1a1 Æ b2a2) b1a1. If b1a1is the same as b2a2, then

either b1a1 Æ b2a2) b1a1 or b1a1 Æ b2a2) b2a2 holds.
Proof. According to Lemma 1, for any two semantic links
b1a1 and b2a2 there exists a semantic factor b3a3, such that
b1a1 6 b3a3, b2a2 6 b3a3, and b1a1 Æ b2a2) b3a3, and satis-
fies: (1) if b1a1 6 b2a2 then b3a3 = b1a1 holds; and, (2) if
b1a1 = b2a2 then b3a3 = b1a1 = b2a2 holds. h
Table 2
Edge operation rules

No. Rules

E-Rule1 C1 —Ra! C2, C2 = E(C3)) C1

E-Rule2 C1 —·! C2, C2 = E(C3)) C1 —
E-Rule3 C1 —Ia! C2, C2 = EA(C3)) C1

E-Rule4 C1 —Ta! C2, C2 = EA(C3)) C

E-Rule5 C1 —Pa! C2, C2 = EA(C3)) C

E-Rule6 C1 —Ia! C2, C2 = ED(C3)) C

E-Rule7 C1 —Ta! C2, C2 = ED(C3)) C

E-Rule8 C1 —Pa! C2, C2 = ED(C3)) C

E-Rule9 C1 —Ia! C2, C2 = EM(C3)) C

E-Rule10 C1 —Ta! C2, C2 = EM(C3)) C

E-Rule11 C1 —Pa! C2, C2 = EM(C3)) C
3.2. Component modification rules

The function of a component can be adapted to help
solve similar problems by modifying its edge or node. Such
a modification concerns the operations on nodes and edges.
We use C1 = E(C2) and C1 = N(C2) to denote: ‘‘C1 is
formed by a modification on the edges of C2’’ and ‘‘C1 is
formed by a modification on the nodes of C2’’ respectively.
Any edge modification or node modification may change
the behaviour of the component. The edge operations con-
cern: (1) append an edge; (2) delete an edge; and, (3) mod-
ify an edge. According to Definition 1, we have the edge
modification rules E-Rule1-8 as shown in Table 2. They
imply that the edge operations on the ancestor of a seman-
tic link cannot make the semantic link stronger. E-Rule9-
11 can be proved by E-Rule1-8. As an example, we prove
E-Rule9 as follows.
Operation

—Ra! C3 Edge operation
·! C3 Edge operation
—Ta! C3 Add an edge

1 —Ta! C3 Add an edge

1 —Ra! C3 Add an edge

1 —Pa! C3 Delete an edge

1 —Ra! C3 Delete an edge

1 —Ra! C3 Delete an edge

1 —Ra! C3 Modify an edge

1 —Pa! C3 Modify an edge

1 —Ra! C3 Modify an edge



Table 3
Node operation rules

No. Rules Operation

N-Rule1 C1 —Ra! C2, C2 = N(C3)) C1 —Ra! C3 Node operation
N-Rule2 C1 —·! C2, C2 = N(C3)) C1 —·! C3 Node operation
N-Rule3 C1 —Ia! C2, C2 = NA(C3)) C1 —Ta! C3 Add a node
N-Rule4 C1 —Ta! C2, C2 = NA(C3)) C1 —Ta! C3 Add a node
N-Rule5 C1 —Pa! C2, C2 = NA(C3)) C1 —Ra! C3 Add a node
N-Rule6 C1 —Ia! C2, C2 = ND(C3)) C1 —Pa! C3 Delete a node
N-Rule7 C1 —Ta! C2, C2 = ND(C3)) C1 —Pa! C3 Delete a node
N-Rule8 C1 —Pa! C2, C2 = ND(C3)) C1 —Pa! C3 Delete a node
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Proof of E-Rule9. Since C2 = EM(C3) can be regarded as
the combination of C2 = ED(C3) and C2 = EA(C3), we
have the following deduction: C1 —Ia! C2, C2 =
EM(C3)) C1 —Ia! C2, C2 = ED(C3), C2 = EA(C3))
C1 —Pa! C2, C2 = EA(C3)) C1 —Ra! C3 (by E-Rule
5–6). Thus E-Rule9 holds. h

The node operations include: (1) append a node; (2)
delete a node; and, (3) modify a node. Any node operation
may cause a modification on the edges related to the node.
The node operations relate to the dependence relationships
among the nodes of the components to be operated. The
node operation rules are shown in Table 3. They imply that
any node operation on the ancestor of a semantic link can-
not make the semantic link stronger.

4. Inexact semantic link and rule reasoning

4.1. Inexact semantic link

Difference exists between descendants that reuse a com-
mon ancestor with the same type of semantic link. To
reflect such a difference, we attach a similarity degree
(sd 2 [0,1]) to the semantic link. The larger sd, the more
the descendant is similar to the ancestor, i.e., a descendant
with a larger sd takes after more behaviours of its ancestor
than that with a smaller sd. We extend the semantic link
notation C 0 —v! C to C 0 —(v, sd)! C, which means that
C 0 takes after C with the semantic factor v and the similar-
ity degree sd. The inexact semantic link is a refinement of
the semantic link.

A number of similarity measurement approaches was
suggested (Levene and Poulovassilis, 1991; Zadeh, 1971).
The similarity degree between two components herein
depends on their large-granularity nodes. More common
nodes two components share, the larger the similarity
degree they have. Let N and N 0 be the node sets of C

and C 0 respectively, jN \ N 0j be the number of the common
node pairs between two components, and jN [ N 0j be the
total amount of the nodes included in C and C 0. The sim-
ilarity degree between C and C 0 can be computed as fol-
lows: sd = u(jN \ N 0j/(jN [ N 0j � jN \ N 0j)), where u(x)
is a function that maps x into [0, 1]. A simple way to com-
pute sd is: sd = 2 * jN \ N 0j/jN [ N 0j. If the nodes of the
components are also components, then jN \ N 0j represents
the number of matched node pairs, which can be deter-
mined by whether the similarity degree between two
matched components is bigger than a predefined threshold
d 2 (0, 1) or not.
4.2. Inexact rule reasoning

Inexact rule reasoning is a forward linking between
rules. Let EOS and NOS be the edge operation set and
the node operation set respectively, C1 —c1! C2 and
C3 —c2! C4 are two semantic links. Rule reasoning is used
to match C2 and C3, such that C1 —c3! C4, where c3 is
determined according to the following three cases:

Case 1: Link rule reasoning. Let ci = (vi, sdi) for i = 1, 2,
3.

If v1 Æ v2) v3, then sd3 = q(sd1, sd2), where q sat-
isfies: sd3 6 sd1 and sd3 6 sd2.

Case 2: Operation rule reasoning.
(1) If c1 2 EOS, c2 2 EOS, then c3 2 EOS and

c1 Æ c2) c3; and,
(2) If c1 2 NOS, c2 2 NOS, then c3 2 NOS and

c1 Æ c2) c3.
Case 3: Hybrid reasoning.

If c1 = (v1, sd1), c2 2 EOS [ NOS, and c1 Æ c2)
c3, then c3 = (v3, sd3), where v3 6 v1, sd3 = k · sd1,
and k 2 (0, 1).
The inexact semantic link provides a natural way to
solve the ‘‘reuse conflict’’ issue when one component
directly or indirectly takes after another with different
semantic factors. For example, we may have the following
two kinds of reasoning: (1) C0 —Ta1! C1, C1 —Ta2!
C3) C0 —Ta3! C3; and, (2) C0 —Pa1! C1, C1 —
Ta2! C3) C0 —Ra3! C3. The two reasoning results
cause two kinds of semantic links to occur between the
same pair of components: C0 and C3. With the inexact
semantic link, two different kinds of semantic links reflect
the reuse relationship between two components from differ-
ent views and with different similarity degrees. A weaker
semantic link reflects a smaller similarity degree between
two components, while a stronger semantic link reflects
a larger similarity degree between two components
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(according to Definition 1). Generally we have the follow-
ing proposition:

Proposition 1. Let C0 —(v1, sd1)! C1 and C0 —ðv01; sd 01Þ !
C1 be two semantic links between C0 and C1. If v1 6 v01, then

sd1 6 sd 01 holds; or, if v01 6 v1, then sd 01 6 sd1 holds.
5. Component overlay

Based on the inexact semantic link, we can construct a
multi-level component overlay to support flexible compo-
nent reuse.

5.1. Basic structure model

The basic structure model of the component overlay con-
sists of three levels top-down: a component level, a model
level, and a function level as shown in Fig. 3. The compo-
nent level consists of a group of component networks, each
of which is constituted by a set of components together with
the inexact semantic link. The model level consists of a
group of model networks, each of which is constituted by
a set of models together with the inexact semantic link.
The inexact semantic link between models can be similarly
defined as the semantic link between components by map-
ping the model implementation structure into the compo-
nent implementation structure. Similar to the notation of
the inexact component semantic link, ‘‘Mi —(v, sd)!Mj’’
is used to denote that Mi takes after Mj with the semantic
factor v and with a similarity degree sd. The model is imple-
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(1) hFS,SpecRi 5 hMS,MRAi 5 hCS,CRAi;
M1
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(2) For any C 2 CS, C is implemented by a subset of
MS, and for any M 2MS, M is implemented by a
subset of FS; and,

(3) Any nodes of the CO are uniformly specified by the
following frame structure:
Tab
He

Ru

H-R
H-R
H-R

H-R
NodeID: [Name: CodeString(level);

Signature: InputType! OutputType;

Type: hN,E,Rij SimpleType;
Behaviour: TextDescription;
Environment:
EnvironmentalVariableDescription].

5.2. Basic operations

The basic operations of the component overlay include
‘‘retrieve’’, ‘‘create’’, ‘‘append’’, and ‘‘delete’’. We herein
mainly introduce the component retrieval operation and
creation operation. Component retrieval is to search for
the required component in terms of users’ retrieval require-
ments, which will be refined during searching. The search-
ing mechanism needs to check the similarity degree and the
semantic link between the requirement (CQ) and the cur-
rent node (Cc), and then to select the next visiting node
(Cn) according to the heuristic rules in Table 4. If there
exists more than one candidate node that satisfy the heuris-
tic rules, then the retrieval mechanism will select the one
that takes after the required component with a bigger sim-
ilarity degree. The user interface of the retrieval operation
is an SQL-like command like the model retrieval interface
as defined in (Zhuge, 1998). The similarity degree can be
included into the condition of these commands. For
example, ‘‘SELECT ALL FROM CO.CLevel WHERE

* -(vi, sdi)-> C’’ is used to select all the components that
take after C with a semantic link vi and with a similarity
degree sdi from the component overlay CO at the compo-
nent level (CLevel).

The creation of a new component is to define its imple-
mentation and establish the semantic link between the new
component and existing components. The function
Create(n,Location) is responsible for creating a node,
n, at the given location (e.g., level). For example, Create

(C,CO.CLevel.Cat1) is used to create a component C in
the category ‘‘Cat1’’ at the component level. The
‘‘create’’ function is implemented through reuse at three
levels: (1) if there exists a reusable component at the com-
ponent level, then the new component can be created by
reusing the existing component through the inexact seman-
le 4
uristic rules for component retrieval

leNo. Heuristic rules

ule1 If Cc —Ta! CQ then select Cn that satisfies Cn —Pa! Cc

ule2 If Cc —Pa! CQ then select Cn that satisfies Cn —Ta! Cc

ule3 If Cc —Ra! CQ then select Cn according to the following
priority order:
hCn —Ta! Cc,Cn —Ra! Cc,Cn —Pa! Cci

ule4 If Cc —Ia! CQ then select Cn that satisfies Cn —Ia! Cc
tic link; (2) if there does not exist a reusable component,
but there exist some models at the model level that can con-
stitute the new component, then the new component can be
created by composing the existing models; and, (3) if there
does not exist a reusable component at the component level
nor the required models at the model level but there exists
some functions at the function level that can be used to
constitute the required models, then use these functions
to compose the required new models, which can be further
used to compose new components.

Other operations include: (1) DelN(n,Location), the
function for deleting a node n at the given location; (2)
DelE(n,n 0, t,Location), the function for deleting an edge
with type t between node n and n 0 at the given location;
(3) AppN(n,Location), the function for appending a node
n at the given location; (4) AppE(n,n 0, t,Location), the
function for appending an edge with type t between node
n and n 0 at the given location; (5) ModN(n,Location),
the function for modifying a node n at the given location.
The edge modification operation can be realized by merg-
ing the edge operation DelE with the node operation
AppN.
5.3. Assessment

We now examine the effectiveness and the efficiency of
the component overlay CO with the following three
assumptions: (1) MB is a model base containing the same
set of models as the model level of the CO; (2) every com-
ponent of the CO is constructed by its model-level models;
and, (3) MSR denotes the model set required by a problem-
solving process. According to the assumptions and the
structure of the component overlay CO, we have: if MSR

is a subset of the MB then MSR is also a sub-set of the
model level of CO, vice versa. So the model level of the
CO is as effective as the MB for supporting the same
problem-solving process. Hence, we have the following
lemma.

Lemma 3. The component overlay is as effective as the

model base for supporting the same problem-solving process.

The component overlay provides the structural informa-
tion and the semantic link for the search mechanism to
enhance its efficiency. We assumedly make an index on
the model base MB according to the behaviour categories
of the models. The retrieval efficiency of the MB with the
index is higher than that without the index. Now, we anal-
ogy the CO to the MB with the index by mapping the com-
ponent level of the CO into the index of the MB, and by
mapping the model level of the CO into the MB. Intui-
tively, the retrieval efficiency of the CO is not lower than
that of MB with the index, so we have the following
lemma.

Lemma 4. The retrieval efficiency of the component base

CO is higher than that of the model base MB for supporting

the same problem-solving process.
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Proof.

Case 1: All the models in the MSR are available in the
MB. In this case, all the models in the MSR

are also available at the model level of the CO

according to the assumption. So the retrieval effi-
ciency of the CO is the same as that of the MB with
index.

Case 2: A model Mk in MSR is not available in the MB

but can be composed by several existing models.
In this case, Mk should be available at the compo-
nent level of the CO according to the assumption.
The retrieval mechanism of the CO does not need
to search for the models one by one at the model
level of the CO for composing Mk, but the retrie-
val mechanism of the MB needs to search for the
required models one by one for composing Mk.
So the retrieval efficiency of the CO is higher than
that of MB with the index in this case.

Case 3: A model Mk in MSR does not exist in the MB

and cannot be composed by existing models. In
this case, the retrieval mechanism of the MB still
needs to check all the existing models. The imple-
mentation relationship of a component enables
the retrieval mechanism of the CO to search for
only the component level, which contains fewer
Solution

Component level

M4
Model level

(Pα, 4/5)

M7 M8

Required solution component CQ

C1 C2

M1

Decision Prob

Fig. 4. Decision-making supported by the component base and model base. L

planning model, M3: sales-planning model, M4: sales-forecasting model, M5:
effective model, M8: assessment model, the implementation of C1: M4 —
implementation of C3: M4 —DD!M1 —DD!M2 —DD!M5, the required
nodes than that of the model level. So the retrie-
val efficiency of the CO is higher than that of MB

with the index in this case.

Summarizing above three conclusions, we can reach that
the retrieval efficiency of the CO is higher than or equal to
that of the MB with the index. Considering the fact that the
retrieval efficiency of the MB with the index is higher than
that without the index, so Lemma 4 holds. h

The semantic link can further enhance the search effi-
ciency by increasing the width of the component overlay
hierarchy (i.e., the average number of the children of every
component node).

More component overlays can be constructed, but, too
many levels will be a burden for the maintenance mecha-
nism. The proper number of the component levels depends
on the total number of the repository components and the
proper number of the components arranged at the basic
component level. A practicable way to determine the num-
ber of the component levels is to use the experience
approach for arranging the multi-level module structure
of a system in the structured analysis and design method.

The maintenance cost of the component overlay is
higher than that of the conventional model base because
the maintenance mechanism of the component overlay
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egend: M1: investment-profit analysis model, M2: long-term production-
production-scheduling model, M6: storage management model, M7: cost-
DD!M1, the implementation of C2: M4 —DD!M1 —DD!M2, the
component CQ: M4 —DD!M1 —DD!M2—DD!M5 —DD!M3.
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needs to maintain the relationships of multiple levels, while
the traditional model base just needs to maintain the model
set by conventional file management system. In practice,
the maintenance can be done off line or by other processes
or services, so the efficiency of the problem-solving plat-
form mainly depends on the search efficiency.

6. Application in building problem-oriented

component base

6.1. Overview

The proposed approach was applied to the establish-
ment of the problem-oriented component base system
PROMBS. At the first stage of the system development, a
model base system RMMBS (Zhuge, 1998) was developed
to improve the traditional FORTRAN-based mathemati-
cal software library (IMSL Math/Library) in two aspects:
(1) provide an inexact query mechanism for the users (espe-
cially the beginners) in the scientific computing field to flex-
ibly retrieve mathematical models (which are coded in
different languages); and, (2) increase the reusability of
the models by establishing multiple ‘inheritance’ among
the models at the signature level. At the second stage, the
system RMMBS was upgraded to the system PROMBS
(Zhuge, 2000), which can provide a problem-oriented
high-level description language POL for users to describe
the solutions to problems with the support of the reposi-
tory components. A translator mechanism is responsible
for translating the solution description into the model-
based programs, where the specification-level models are
mapped into the implementation-level models (coded in
3GL) during the translation process. At the third stage,
the system PROMBS was evolved into the component base
system that supports flexible component reuse in solving
decision problems (see Fig. 4). A large-granularity compo-
nent level was established above the model base that was
developed at the first stage. We upgraded the multiple
‘inheritance’ relationship to the inexact semantic link,
and incorporated the related rules and rule reasoning
mechanism into the retrieval mechanism.

6.2. Component reuse example

6.2.1. Background description

Managers need to make production and operation man-
agement decisions according to the market demands and
also need to adjust these decisions according to the change
of market. Before making decision to invest a new project,
managers need to make market forecast and profit forecast
so as to choose the best project. The market forecast model
and the profit forecast model should be composed as a
component for later use. Having made their investment
decisions they need to make long-term production plans,
storage management plans, and sales plans. While they
are making production plans, market change may occur,
so they need to keep updating the market analysis and
the profit analysis so as to adjust their investment deci-
sions. At this time they can reuse the existing component
rather than composing the solution from scratch.

6.2.2. Component overlay description

The model level includes the following models or model
categories.

(1) Analysis model category, including the investment
profit analysis model and the risk analysis model.

(2) Production planning model category, including the
short-term production planning model, the long-term
production planning model, and the production
scheduling model.

(3) Sales model category, including the sales planning
model and the sales forecasting model.

(4) Storage management model.
(5) Cost-effect model.
(6) Assessment model.
(7) Capacity evaluation model.

The component level consists of three components: C1,
C2 and C3. Their implementations are described as the leg-
end in Fig. 5. The component overlay is graphically
described in Fig. 5. We herein assume that the required
component (CQ) is represented as: CQ: M4 —DD!M1 —
DD!M2 —DD!M5 —DD!M3. Since there does not
exist a component in the component overlay that exactly
matches the requirement, users (decision-makers) can use
the inexact retrieval mechanism to find a reusable
component.

6.2.3. Inexact reuse example

The users can use ‘SELECT ALL FROM CO.CLevel.-
Cat1 WHERE * -Pa-> CQ AND sd(CQ,*) P 0.85’ to
express that the candidate components (denoted as ‘*’) par-
tially take after the required component and that the simi-
larity degrees should be bigger than or equal to 0.85. The
retrieval mechanism just needs to check one of the three
components, and then the retrieval mechanism can find
the proper component by rule reasoning.

Now we examine the following three cases that the
retrieval mechanism may encounter.



1478 H. Zhuge / The Journal of Systems and Software 79 (2006) 1469–1482
(1) If component C3 is the first one to be checked, then
the target C3 has been found because the inexact
semantic link exists: C3 —(Pa, 8/9)! CQ, and the
similarity degree 8/9 is bigger than the required 0.85.

(2) If component C2 is the first one to be checked, then
the retrieval mechanism gets the semantic link:
C2 —(Pa, 6/8)! CQ. So the rule reasoning mecha-
nism needs to find a component C that satisfies:
C2 —(Pa, sd)! C, where sd is the closest to 6/8. Since
C2 —(Pa, 6/7)! C3 and C3 is the last node, C3 satis-
fies the requirement.

(3) If component C1 is the first one to be checked, then the
retrieval mechanism gets the semantic link: C1 —
(Pa, 4/7)! CQ. The rule reasoning mechanism needs
to find a component C that satisfies: C1 —(Pa, sd)! C,
where sd is the closest to 4/7. By rule reasoning: C1 —
(Pa,4/5)! C2, C2 —(Pa,6/7)! C3) C1 —(Pa,4/7)!
C3, the retrieval mechanism can find the suitable com-
ponent C3. Hence the inexact semantic link reasoning
can support the flexible component reuse.

The inexact rule reasoning mechanism can also explain
the retrieval result based on the proposed rules. For exam-
ple, it can list all the candidate components with the simi-
larity degrees and the semantic link between them.
7. Experiment for building common software component

overlay

The proposed approach was used to build a COM inter-
face component overlay, which consists of a software com-
ponent level and a method level (in COM context). A
software component herein is implemented by a set of meth-
ods at the method level. The following are four components:

C1: [Name: IUnKnow;

Implementation: h{QueryInterface, AddRef, Release},
{}, {}i];

C2: [Name: IOleWindow;

Implementation: h{GetWindow, ContextSensitive-
Help}, {}, {}i];

C3: [Name: IOlePlaceUIWindow;

Implementation: h{QueryInterface, AddRef, Release,
GetWindow, ContextSensitiveHelp, GetBorder,
RequestBorderSpace, SetBorderSpace, SetActiveOb-
ject}, {}, {}i];

C4: [Name: IOleInPlaceFrame;

Implementation: h{QueryInterface, AddRef, Release,
GetWindow, ContextSensitiveHelp, GetBorder,
RequestBorderSpace, SetBorderSpace, SetActiveOb-
ject, InsertMenus, SetMenu, RemoveMenus, SetSta-
tusText, EnableModeless, TranslateAccelerator}, {},
{}i].
The inexact semantic link among the four components is
shown in Fig. 5. Users can use the query ‘SELECT ALL
WHERE sd(CQ = {IOlePlaceUIWindow},*) P 0.75’ to
retrieve all the components that match CQ with the similar-
ity degree bigger than or equal to 0.75. The retrieval mech-
anism carries out the searching and then returns the query
result: {IOleInPlaceFrame}. If the query condition is
relaxed to ‘SELECT ALL WHERE sd(CQ = {IOlePla-
ceUIWindow},*) P 0.5’, then we will get the query result:
{IOleInPlaceFrame, IUnKnow}. If the query condition is
relaxed to ‘SELECT ALL WHERE sd(CQ = {IOlePla-

ceUIWindow},*) P 0.3’, then we will get the query result:
{IOleInPlaceFrame, IUnKnow, IOleWindow}.

The repository architecture of previous COM interface
is classification based and the retrieval mechanism is
keyword based. The proposed approach provides a way
to improve previous mechanism by establishing inexact
semantic links among components and by providing the
inexact retrieval mechanism. Besides, a large-granularity
component level can be formed based on the existing com-
ponent level and method level. A flexible reuse at the large-
granularity level can be similarly realized. This example
implicates that the approach is also suitable for realizing
inexact reuse of well-defined software components. For
example, we can realize the flexible reuse of software
patterns by establishing inexact semantic links among
patterns (or the large-granularity pattern components) in
a software pattern base. COM and DCOM do not have
this technology, but it is useful in Web services.

8. Application in realizing flexible Web service retrieval

With the rapid development of Internet applications and
service-oriented business model, component technologies
are developing towards distributed Web service paradigm,
which aims at providing an open platform for the develop-
ment, deployment, interaction, and management of glob-
ally distributed e-services. The Web standards like SOAP
(Simple Object Access Protocol), WSDL (Web Service
Description Language) and UDDI (Universal Definition,
Discovery and Integration) are the implementation basis
of Web Services.

The key to implement Web services is to discover the
appropriate service that matches a demand from large
candidate services. So the semantic description of services
and matching between services become the key issue. Direct
description of the functions of services is one way (Zhuge,
2004), but sometimes the function of a service can be deter-
mined by the functions of semantically related services. The
proposed approach can be used for describing the semantics
between services that can help determine appropriate ser-
vices and raise the efficiency of service retrieval.

To well-organize services is another aspect that is impor-
tant to raise the efficiency of service retrieval. The Knowl-
edge Grid is an ideal platform that can publish, share and
manage resources including information, knowledge and
services across the Internet (Zhuge, 2004). It includes two
major components: (1) a Resource Space Model RSM that
uniformly specifies and organizes resources in normal
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forms; and, (2) a resource operation mechanism that
enables users to conveniently use resources in the resource
space. The semantic link and the RSM reflect the classifica-
tion semantics and the link semantics, which can be used
for organizing services in an efficient way.

With reference to the proposed approach, we established
the inexact relationships between Web services and between
Models, and realized flexible Web service retrieval based on
the inexact relationships (Zhuge and Liu, 2004). Fig. 6
shows the operation interface for realizing flexible Web
Service retrieval.

9. Synergy normal organization and self-organization

Just as the normalized database guarantees the efficiency
and effectiveness of data management, a well-organized com-
ponent overlay ensures the efficiency of component reuse.
The normalization theory of the Knowledge Grid can be used
to normalize the local component repository (Zhuge, 2004).
The expansion of various components distributed over the
Internet challenges the normalization of a global component
repository. The flat, equal and autonomous organization
paradigms become increasingly important. To synergy the
normal organization and self-organization can raise the effi-
ciency of component management in a dynamic distributed
environment. One way to realize such a synergy is to use
the P2P network at the bottom for accurately locating com-
ponents in a large dynamic network, and to use the normal
organization in the upper overlay to realize normal organiza-
tion of resources (Zhuge, 2004).

The current Web is an Internet information overlay that
self-organizes Web pages for human browsing by hyper-
links. Intelligent applications also need knowledge and ser-
vices. The semantic links such as the ‘‘cause-effect’’ and
‘‘implication’’ relationships connect distributed knowledge
to form a knowledge overlay. The semantic links such as
‘‘sequential’’ and ‘‘similar-to’’ connect services to form a
service overlay. The composition of the underlying over-
lays forms different types of components. The semantic
links such as ‘‘is-part-of’’ and ‘‘similar-to’’ connect compo-
nents to form the component overlay. Fig. 7 shows a solu-
tion to synergy these overlays. The information overlay
and the knowledge overlay support the service overlay,
which enriches the knowledge overlay and the information
overlay during use.

In the future Knowledge Grid environment, informa-
tion, knowledge and service will take the same form that
can dynamically organize themselves according to require-
ment and evaluation of mutual-benefit (Zhuge, 2004, 2005).
Some organizations can be generalized as component for
reuse in new cases. The function of a component can be
adapted by changing its internal links.

10. Networking autonomous spaces in e-Science

Knowledge Grid environment

The notion of components can be promoted from pas-
sive reuse (components are selected by an application pro-
gram or user) to active clustering (components can
autonomously cluster to solve a problem). Passive reuse
and active clustering effect differently: passive reuse reduces
problem-solving cost, while active clustering gains prob-
lem-solving ability.

The future interconnection environment has five basic
parameters: space, time, structure, relation, and worth
(Zhuge, 2005). The environment needs the ability of active
clustering—clustering autonomous virtual spaces that can
integrate services to provide personalized services. The
high-level architecture of the China e-Science Knowledge
Grid environment IMAGINE-I has: research roles, research
space and research resources (resources are defined by struc-
ture). People and agents can play roles of the leader,
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member, collaborator, supervisor, student, etc. Resources
include data, papers, books, tools, instruments, etc. Re-
search spaces are virtually personalized research spaces
where researchers can use appropriate on-demand services.
Services are dynamically clustered from candidates distrib-
uted world-widely.

The architecture of a research space takes after the
soft-device (Zhuge, 2002). A new research space can be
generated by inheriting from a root space—a software
framework, and then personalizing the following items:

(1) User profile, including user’s login information and
research interests.

(2) Services, researchers’ needs in research.
(3) Activities, the user research activities.
(4) Workflows, research processes that order activities.

A resource space together with its users constitutes a
semantically interoperation intelligent unit that can work
and cooperate with others autonomously. Research spaces
can dynamically get together to form research communi-
ties. A research space can join and leave a community
freely. The proposed semantic relationships between com-
ponents exist between research spaces.

In addition, the following semantic relationships also
exist between research spaces:

(1) A —peer! B, A and B belong to the same
community;

(2) A —cooperate! B, A cooperates with B;
(3) A —supervise! B, A supervises B in research and

development;
(4) A —serve! B, A serves B with a logistic workflow;
(5) A —share! B, A shares with B on research

resources;
(6) A —help! B, A helps B in answering questions;
(7) A ��help! C, A indirectly helps C when A —

help! B and B —help! C.

The following implication relationship exists between
these semantic links:

(1) A —peer! B) B —peer! A;
(2) A —cooperate! B) B —cooperate! A;
(3) A —share! B) B —share! A; and,
(4) A —cooperate! B) A —share! B.

These semantic links connect personalized research
spaces to form an autonomous Semantic Grid. Help is usu-
ally invoked by queries, and queries can be forwarded from
one peer to another to find an appropriate answer. Seman-
tic links can enhance the efficiency of routing among these
spaces (Zhuge et al., 2005). Research spaces can play even
more active role in research.

Working with such research spaces, researchers discuss,
experiment, and document with easily available research
resources to share a knowledge flow network. The knowl-
edge flow network together with the underlying Semantic
Grid form a live Knowledge Grid.

11. Related work and discussion

Semantic links have been enriched by more semantic
factors such as implication, cause-effect and similar-to for
wider applications. More semantic factors can be defined
according to specific application domain. An algebra
model for computing semantic links has been developed
(Zhuge, 2004).

Inheritance is a way to reuse software. Studies on inher-
itance concern the fields of OO methodology (Booch, 1993;



H. Zhuge / The Journal of Systems and Software 79 (2006) 1469–1482 1481
Sen, 1997), OOP (Canning et al., 1989; Wegner, 1990),
functional programming, type theory and formal semantics
(Bradley and Clemence, 1988; Clark, 1995; Cook and Pals-
berg, 1989). They focus on either the implementation
aspects or the behaviour aspects. From the viewpoint of
OOP, inheritance is a reuse or an incremental definition
mechanism. Four kinds of compatibility of inheritance
(i.e., behaviour compatibility, signature compatibility,
name compatibility, and cancellation) were suggested in
(Wegner, 1990). The ‘white box’ inheritance and the ‘black
box’ inheritance were discussed in (Edwards, 1977).

Compared with the traditional inheritance concept, the
presented semantic link has two main advantages. First,
the semantic link relationship has richer semantics than
traditional inheritance. Inheritance can be regarded as a
kind of semantic link. Second, the definition of the seman-
tic link is language-irrelevant, while the inheritance of the
OOP only supports the code-level reuse. The code-level
reuse depends on implementation language. For example,
a component coded in C++ cannot inherit from a compo-
nent coded in another language like Java.

The problem of software component reuse has been
widely studied (Batory and Malley, 1992; Felice, 1993;
Muhanna, 1993; Rajlich and Silva, 1996; Thompson,
1991; Yau and Tsai, 1987; Zaremski and Wing, 1995).
Solutions can be classified into three categories: (1) the for-
mal semantic methods like the algebraic, the operational
and the denotation semantic methods; (2) the informal
methods like information retrieval based on the storage
and retrieval context of components, the topological meth-
ods, and the knowledge-based methods; and, (3) the com-
bination of the formal and the informal.

The semantic overlay indirectly specifies semantics. It is
between formal and informal, and should belong to a ‘grey
box’ approach. On one hand, it is language-irrelevant, so
the approach is a black box reuse (below the function level
is black). On the other hand, a component definition
explodes its implementation structure. So it has the
advantages of both ‘black box’ reuse and ‘white box’ reuse,
and it can overcome the disadvantages of the ‘white box’
reuse.

Compared with the hyper-graph data model (Levene
and Poulovassilis, 1991), the presented component over-
lay model has two characteristics: (1) components are
organized in semantic links, while the hyper-graph data
model is based on the value-dependence relationship;
and, (2) the component base retrieval is a heuristic
searching based on semantic link and rule reasoning,
while the retrieval mechanism in the hyper-graph data
model is based on the value-based function dependence
relationship.

Compared with the fuzzy relationship (Zadeh, 1971), the
semantic link relationship is objectively defined according
to the similarity degree among the well-defined compo-
nents, and can be derived according to relevant links. This
objectiveness is required by the fact that a user should be
clear about whether a component could completely solve
a problem (or a sub-problem) when composing the
solution. While, the initial fuzzy factor of the fuzzy rela-
tionship has to be subjectively given. Besides, the semantic
links can serve to refine the relationships among
components.

There are three differences between the semantic links
and the association rules in the data-mining field (Han
and Fu, 1999). First, the former reflects richer semantics
among components, while the later is a kind of ‘cause-
effect’ rule among data elements. Second, the discussed
object of the former is complex object but the latter is data.
The former focuses on solving complex or large-scale prob-
lems, while the latter is suitable for supporting small and
low-level decisions. Third, the former is a multi-value rela-
tionship while the latter is a fuzzy relationship.

To form a more powerful component retrieval approach,
the presented approach can be integrated with other related
approaches such as: (1) the white-box reuse, e.g., the mech-
anism of modifying a component to suit the new require-
ment (Batory et al., 2000); (2) the automatic component
generation mechanism (Mili et al., 1997); and, (3) the
GUI of the retrieval mechanism, e.g., the mobile GUI that
enables computer-illiterate people to use the retrieval mech-
anism, as well as the active browsing interface that could
raise retrieval efficiency (Drummond et al., 2000).

A component can also be a process that can be passively
reused, for example, the component-based workflow devel-
opment (Zhuge, 2003). The component-based workflow
development has potential in promoting the efficiency of
workflow system development and in increasing the com-
prehensibility and correctness of the workflow design. A
component can also be an active process. An active process
component can actively find relevant processes and inte-
grate with each other to form more complex process
according to requirements.

12. Conclusion

Intelligent applications in the future interconnection
environment need the cooperation of distributed resources
and the support from high to low semantic levels. This
paper proposes an approach to support intelligent applica-
tions by establishing semantic component networking
overlays. Flexible component reuse is realized by semantic
component retrieval and rule reasoning on semantic link
network. The semantic component overlay is effective
and efficient. Compared with previous software reuse
approaches, the proposed approach is flexible, high-level,
experience-based, and language-irrelevant. The proposed
approach has potential in realizing flexible reuse of various
components such as software components, workflow com-
ponents, text components, Web services, XML compo-
nents, semantic link network components, and knowledge
components. The synergy of the static component reuse
and dynamic component clustering enables the proposed
approach to support intelligent applications in the Know-
ledge Grid environment.
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